Nociceptive-Evoked Potentials Are Sensitive to Behaviorally Relevant Stimulus Displacements in Egocentric Coordinates
نویسندگان
چکیده
Feature selection has been extensively studied in the context of goal-directed behavior, where it is heavily driven by top-down factors. A more primitive version of this function is the detection of bottom-up changes in stimulus features in the environment. Indeed, the nervous system is tuned to detect fast-rising, intense stimuli that are likely to reflect threats, such as nociceptive somatosensory stimuli. These stimuli elicit large brain potentials maximal at the scalp vertex. When elicited by nociceptive laser stimuli, these responses are labeled laser-evoked potentials (LEPs). Although it has been shown that changes in stimulus modality and increases in stimulus intensity evoke large LEPs, it has yet to be determined whether stimulus displacements affect the amplitude of the main LEP waves (N1, N2, and P2). Here, in three experiments, we identified a set of rules that the human nervous system obeys to identify changes in the spatial location of a nociceptive stimulus. We showed that the N2 wave is sensitive to: (1) large displacements between consecutive stimuli in egocentric, but not somatotopic coordinates; and (2) displacements that entail a behaviorally relevant change in the stimulus location. These findings indicate that nociceptive-evoked vertex potentials are sensitive to behaviorally relevant changes in the location of a nociceptive stimulus with respect to the body, and that the hand is a particularly behaviorally important site.
منابع مشابه
Novelty is not enough: laser-evoked potentials are determined by stimulus saliency, not absolute novelty.
Event-related potentials (ERPs) elicited by transient nociceptive stimuli in humans are largely sensitive to bottom-up novelty induced, for example, by changes in stimulus attributes (e.g., modality or spatial location) within a stream of repeated stimuli. Here we aimed 1) to test the contribution of a selective change of the intensity of a repeated stimulus in determining the magnitude of noci...
متن کاملNociceptive laser-evoked brain potentials do not reflect nociceptive-specific neural activity.
Brief radiant laser pulses can be used to activate cutaneous Adelta and C nociceptors selectively and elicit a number of transient brain responses [laser-evoked potentials (LEPs)] in the ongoing EEG. LEPs have been used extensively in the past 30 years to gain knowledge about the cortical mechanisms underlying nociception and pain in humans, by assuming that they reflect at least neural activit...
متن کاملReliability of Motor Evoked Potentials Induced by Transcranial Magnetic Stimulation: The Effects of Initial Motor Evoked Potentials Removal
Introduction: Transcranial magnetic stimulation (TMS) is a useful tool for assessment of corticospinal excitability (CSE) changes in both healthy individuals and patients with brain disorders. The usefulness of TMS-elicited motor evoked potentials (MEPs) for the assessment of CSE in a clinical context depends on their intra-and inter-session reliability. This study aimed to evaluate if removal ...
متن کاملShort trains of intra-epidermal electrical stimulation to elicit reliable behavioral and electrophysiological responses to the selective activation of nociceptors in humans.
Currently, the study of nociception in humans relies mainly on thermal stimulation of heat-sensitive nociceptive afferents. To circumvent some limitations of thermal stimulation, it was proposed that intra-epidermal electrical stimulation (IES) could be used as an alternative method to activate nociceptors selectively. The selectivity of IES relies on the fact that it can generate a very focal ...
متن کاملIntracortical modulation, and not spinal inhibition, mediates placebo analgesia.
Suppression of spinal responses to noxious stimulation has been detected using spinal fMRI during placebo analgesia, which is therefore increasingly considered a phenomenon caused by descending inhibition of spinal activity. However, spinal fMRI is technically challenging and prone to false-positive results. Here we recorded laser-evoked potentials (LEPs) during placebo analgesia in humans. LEP...
متن کامل